Correlation r calculation with example in hindi and english

Pearson Correlation — Formula & Worked Example (n = 10)

1) Definition (authentic)

Population correlation (rho): ρ = Cov(X,Y) / (σX σY)
Sample Pearson correlation (r):
r = Σ (xi − x̄)(yi − ȳ) / √[ Σ(xi − x̄)² · Σ(yi − ȳ)² ]

2) Computational (shortcut) formula

For calculations using raw sums:
r = [ n·Σ(xy) − (Σx)(Σy) ] / √{ [ n·Σ(x²) − (Σx)² ] · [ n·Σ(y²) − (Σy)² ] }

Worked example (complete steps) — n = 10

Dataset (given)

X = 5, 6, 7, 8, 9, 4, 3, 2, 1, 10
Y = 12, 14, 15, 18, 20, 10, 8, 7, 5, 22

Step A — Construct table of intermediate values

i Xi Yi Xi·Yi Xi² Yi²
15126025144
26148436196
371510549225
481814464324
592018081400
64104016100
73824964
82714449
9155125
101022220100484
Σ ΣX = 55 ΣY = 131 ΣXY = 876 ΣX² = 385 ΣY² = 2011

Step B — Compute means

n = 10

x̄ = ΣX / n = 55 / 10 = 5.5

ȳ = ΣY / n = 131 / 10 = 13.1

Step C — Compute centered products (alternate view)

We can also compute Σ (Xi − x̄)(Yi − ȳ), Σ (Xi − x̄)² and Σ (Yi − ȳ)².

iXiYiXi−x̄Yi−ȳ (X−x̄)(Y−ȳ)(X−x̄)²(Y−ȳ)²
1512-0.5-1.10.550.251.21
26140.50.90.450.250.81
37151.51.92.852.253.61
48182.54.912.256.2524.01
59203.56.924.1512.2547.61
6410-1.5-3.14.652.259.61
738-2.5-5.112.756.2526.01
827-3.5-6.121.3512.2537.21
915-4.5-8.136.4520.2565.61
1010224.58.940.0520.2579.21
Σ (centered) Σ (X−x̄)(Y−ȳ) = 155.50 Σ (X−x̄)² = 82.50 Σ (Y−ȳ)² = 294.90

Step D — Compute Pearson r using centered sums

r = Σ (X−x̄)(Y−ȳ) / √[ Σ (X−x̄)² · Σ (Y−ȳ)² ]
Substitute numbers: r = 155.50 / √(82.50 × 294.90)
√(82.50 × 294.90) = √24359.25 = 155.981...
⇒ r = 155.50 / 155.981... = 0.996933 (approx)

Step E — (Optional) compute r using shortcut formula (same result)

r = [ n·ΣXY − (ΣX)(ΣY) ] / √{ [ n·ΣX² − (ΣX)² ] · [ n·ΣY² − (ΣY)² ] }
Numerator = 10×876 − 55×131 = 8760 − 7205 = 1555
Denominator = √[ (10×385 − 55²) × (10×2011 − 131²) ] = √[ 825 × 2949 ] = √2435925 = 1559.7836...
r = 1555 / 1559.7836... = 0.996933 (same as above)

Step F — Test significance (t-test for r)

Test statistic: t = r · √[ (n−2) / (1 − r²) ] , df = n − 2
r = 0.996933 , n = 10 ⇒ t ≈ 36.03 , df = 8
This t is extremely large ⇒ two-tailed p ≪ 0.001 (highly significant).

Step G — 95% Confidence Interval (Fisher z method)

1) z' = 0.5 · ln((1+r)/(1−r)) = 0.5·ln((1.996933)/(0.003067)) ≈ 3.2579
2) SE(z') = 1 / √(n−3) = 1 / √7 ≈ 0.37796
3) 95% CI on z': z' ± 1.96·SE ⇒ [ 3.2579 − 0.7408 , 3.2579 + 0.7408 ] = [2.5171 , 3.9987 ]
4) Back-transform bounds to r: lower ≈ 0.98658 , upper ≈ 0.99930
⇒ 95% CI for r ≈ [0.9866 , 0.9993]
English interpretation: r ≈ 0.997 indicates an extremely strong positive linear relationship between X and Y. The correlation is statistically significant (t ≈ 36, p ≪ 0.001). The 95% CI [0.9866, 0.9993] shows the population correlation is also very likely to be very high.

पियरसन सहसंबंध — सूत्र और पूरा उदाहरण (n = 10)

1) परिभाषा (सटीक)

जनसंख्या सहसंबंध (ρ): ρ = Cov(X,Y) / (σX σY)
नमूना पियरसन सहसंबंध (r):
r = Σ (xi − x̄)(yi − ȳ) / √[ Σ(xi − x̄)² · Σ(yi − ȳ)² ]

2) गणनात्मक (shortcut) सूत्र

r = [ n·Σ(xy) − (Σx)(Σy) ] / √{ [ n·Σ(x²) − (Σx)² ] · [ n·Σ(y²) − (Σy)² ] }

पूर्ण उदाहरण (चरण-दर-चरण)

दिए गए आंकड़े

X = 5, 6, 7, 8, 9, 4, 3, 2, 1, 10
Y = 12, 14, 15, 18, 20, 10, 8, 7, 5, 22

चरण A — मध्यवर्ती तालिका

(ऊपर दी गयी तालिका देखें — वही X, Y, XY, X², Y² और सम हैं: ΣX=55, ΣY=131, ΣXY=876, ΣX²=385, ΣY²=2011)

चरण B — माध्य निकालना

n = 10

x̄ = 55 / 10 = 5.5

ȳ = 131 / 10 = 13.1

चरण C — केंद्रित गुणन और वर्ग जमा

Σ (X−x̄)(Y−ȳ) = 155.50 ; Σ (X−x̄)² = 82.50 ; Σ (Y−ȳ)² = 294.90

चरण D — पियरसन r गणना

r = 155.50 / √(82.50 × 294.90) = 155.50 / 155.981... = 0.996933

चरण E — महत्व परीक्षण (t)

t ≈ 36.03, df = 8 ⇒ p बहुत छोटा (p ≪ 0.001) — सार्थक (statistically significant)

चरण F — 95% विश्वसनीयता अंतर (Fisher z)

95% CI for r ≈ [0.9866 , 0.9993]
व्याख्या: r ≈ 0.997 बहुत मजबूत धनात्मक रैखिक सम्बन्ध दर्शाता है। यह सांख्यिकीय रूप से महत्वपुर्ण है और 95% CI भी ऊँचा है।

If you want this exact content as a copy-paste **Blogger post with nicer styling**, OR as a **single image (PNG) of the table** for your post, tell me and I will produce it (Blogger-safe) — or if you prefer, I can replace the numbers with your dataset and recalculate step-by-step.

Admin

Post a Comment

Previous Post Next Post